博客
关于我
TFLite: interprenter run
阅读量:752 次
发布时间:2019-03-23

本文共 1560 字,大约阅读时间需要 5 分钟。

私 void classifyFrame() {// 获取BitmapBitmap bitmap = textureView.getBitmap(classifier.getImageSizeX(), classifier.getImageSizeY());// 感兴趣的文本String textToShow = classifier.classifyFrame(bitmap);}

// 输入数据的保存空间ByteBuffer=imgData=ByteBuffer.allocateDirect(DIM_BATCH_SIZE//1* getImageSizeX()* getImageSizeY()* DIM_PIXEL_SIZE//3* getNumBytesPerChannel());

// 将Bitmap转换为ByteBufferprivate void convertBitmapToByteBuffer(Bitmap bitmap) {imgData.rewind();bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0, bitmap.getWidth(), bitmap.getHeight());

long startTime = SystemClock.uptimeMillis();pixel=0;for (int i=0; i

}

protected void addPixelValue(int pixelValue) {imgData.put((byte)((pixelValue >> 16) & 0xFF));imgData.put((byte)((pixelValue >> 8) & 0xFF));imgData.put((byte)(pixelValue & 0xFF));}

// TensorFlow Lite引擎protected Interpreter tflite;// 输入结果存储空间private ByteBuffer imgData;

// 模型加载与预处理tflite= new Interpreter(loadModelFile(activity));imgData=ByteBuffer.allocateDirect(DIM_BATCH_SIZE//1* getImageSizeX()* getImageSizeY()* DIM_PIXEL_SIZE//3* getNumBytesPerChannel());

// 模型运行public void run(Object input) {Object[] inputs = {input};Map<Integer, Object> outputs = new HashMap<>();outputs.put(0, output);runForMultipleInputsOutputs(inputs, outputs);}

public void runForMultipleInputsOutputs(Object[] inputs, Map<Integer, Object> outputs) {Tensor[] tensors = wrapper.run(inputs);for (Integer idx : outputs.keySet()) {tensors[idx].copyTo(outputs.get(idx));}}

// 定义模型输入维度private static native int[] getInputDims(long interpreterHandle, int inputIdx, int numBytes);

转载地址:http://icuzk.baihongyu.com/

你可能感兴趣的文章
ngrok内网穿透可以实现资源共享吗?快解析更加简洁
查看>>
ngrok内网穿透可以实现资源共享吗?快解析更加简洁
查看>>
NHibernate学习[1]
查看>>
NHibernate异常:No persister for的解决办法
查看>>
Nhibernate的第一个实例
查看>>
nid修改oracle11gR2数据库名
查看>>
NIFI1.21.0/NIFI1.22.0/NIFI1.24.0/NIFI1.26.0_2024-06-11最新版本安装_采用HTTP方式_搭建集群_实际操作---大数据之Nifi工作笔记0050
查看>>
NIFI1.21.0_java.net.SocketException:_Too many open files 打开的文件太多_实际操作---大数据之Nifi工作笔记0051
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_补充_插入时如果目标表中已存在该数据则自动改为更新数据_Postgresql_Hbase也适用---大数据之Nifi工作笔记0058
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_补充_更新时如果目标表中不存在记录就改为插入数据_Postgresql_Hbase也适用---大数据之Nifi工作笔记0059
查看>>
NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
查看>>
NIFI1.21.0_Postgresql和Mysql同时指定库_指定多表_全量同步到Mysql数据库以及Hbase数据库中---大数据之Nifi工作笔记0060
查看>>
NIFI1.21.0最新版本安装_连接phoenix_单机版_Https登录_什么都没改换了最新版本的NIFI可以连接了_气人_实现插入数据到Hbase_实际操作---大数据之Nifi工作笔记0050
查看>>
NIFI1.21.0最新版本安装_配置使用HTTP登录_默认是用HTTPS登录的_Https登录需要输入用户名密码_HTTP不需要---大数据之Nifi工作笔记0051
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增加修改实时同步_使用JsonPath及自定义Python脚本_03---大数据之Nifi工作笔记0055
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_插入修改删除增量数据实时同步_通过分页解决变更记录过大问题_01----大数据之Nifi工作笔记0053
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表或全表增量同步_实现指定整库同步_或指定数据表同步配置_04---大数据之Nifi工作笔记0056
查看>>
NIFI1.23.2_最新版_性能优化通用_技巧积累_使用NIFI表达式过滤表_随时更新---大数据之Nifi工作笔记0063
查看>>